Biochemical characterization of insecticide resistance and exposure in Aedes aegypti population from Wonosobo (a new highland Dengue endemic area), Central Java, Indonesia

Dyah Widiastuti, Bina Ikawati, Martini Martini, Nastiti Wijayanti

Abstract


Latar Belakang: Resistensi terhadap insektisida terutama terjadi karena adanya perubahan pada enzim metabolik serangga. Enzim metabolik yang sering berperan dalam kejadian resistensi antara lain adalah esterase dan monooksigenase.

Metode: Uji kerentanan dan uji biokimia untuk mendeteksi resistensi terhadap malation dan cypermetrin dilakukan pada Aedes aegypti dari Wonosobo (daerah endemis baru infeksi Dengue di dataran tinggi). Uji coba yang dilakukan pada generasi F1 nyamuk Ae.aegypti yang tertangkap di lapangan bertujuan untuk mengetahui mekanisme resistensi berdasarkan aktivitas dua enzim detoksifikasi yaitu esterase dan monooksigenase. Wawancara dengan menggunakan kuesioner terstruktur dilakukan untuk mengetahui penggunaan insektisida oleh masyarakat dan pemerintah daerah.

Hasil: Uji kerentanan menunjukkan mortalitas sebesar 23,4% setelah terpapar malathion 0,8% dan 46,7% setelah terpapar cypermethrin 0,05%. Hasil uji biokimia menunjukkan bahwa aktivitas esterase dan monooksigenase cenderung meningkat pada Ae.aegypti di Wonosobo. Wawancara dan kuesioner menyimpulkan bahwa cypermetrin adalah satu-satunya golongan insektisida yang digunakan dalam program pengendalian vektor oleh Dinas Kesehatan Wonosobo dan merupakan tipe insektisida yang paling sering digunakan di rumah tangga oleh masyarakat Wonosobo untuk mengendalikan populasi Ae.aegypti.

Kesimpulan: Ditemukan nyamuk Ae. aegypti yang mengalami peningkatan aktivitas enzim esterase dan monooksigenase pada populasi Ae. aegypti di Kabupaten Wonosobo. Hal ini selaras dengan status resistensi populasi nyamuk tersebut yang resisten terhadap Malation dan Cypermetrin.

Kata kunci: Ae.aegypti Wonosobo, biokimia, paparan insektisida, resistensi


Abstract

Background: Resistance to insecticides mainly occurs due to changes in insect metabolic enzyme. A metabolic enzyme which was often involved in insecticide resistance is esterase and monooxygenase.

Methods: Susceptibility test and biochemical assay to detect malathion and cypermethrin resistance were conducted on Aedes aegypti from Wonosobo (new highland Dengue endemic area). The test was performed on F1 generation of Ae.aegypti field caught mosquitoes which aimed to determine the resistance mechanisms regarding two detoxifying enzymes i.e. esterase and monooxygenase. Interview using structured questionnaires was conducted to investigate the usage of insecticide by the society and local government.

Results: Susceptibility test showed 23.4 and 46.7% mortalities after exposure to 0.8% malathion and 0.05% cypermethrin. The biochemical assay result suggested that esterase, and monooxygenase activity tend to increase in Ae.aegypti in Wonosobo. Interview and questionnaires conclude that synthetic pyrethroid was the only insecticide type used in vector control program by Wonosobo Health Office and was the most frequent insecticide type to be used in household by Wonosobo society to control Ae.aegypti population.

Conclusion: Aedes aegypti with increased esterase and monooxygenase activity were found in Wonosobo. This result was in line with the resistance status of Ae. aegypti population in Wonosobo which resistant to Malathion and Cypermethrin.

Keywords: Ae.aegypti Wonosobo, biochemical, insecticide exposure, resistance


Keywords


Ae.aegypti Wonosobo, biochemical, insecticide exposure, resistance

References


Fuentes SL, Hayden MH, Rodriguez CW, Martinez CO, Santos BT, Kobylinski KC, et al. The Dengue virus Mosquito vector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg. 2012;87(5):902–9.

Zell R. Global climate change and the emergence/re-emergence of infectious diseases. International Journal of Medical Microbiology 2004;293:16-26

Office WDH. Dengue Haemorhagic Fever reported cases 2007-2013. Wonosobo: Wonosobo District Health Office; 2014.

Ikawati B. The resistance map of Aedes Aegypti (Linn) against Cypermethrin 0,05%, Malathion 0,8% and Temephos in Purworejo, Kebumen, Pekalongan, Demak, Wonosobo, Cilacap, Kudus, Klaten, Banjarnegara in 2014. Research and Development Unit for Zoonosis Control, Banjarnegara, Research Report 2014.

Oppenoorth F. Biochemical and genetic in insecticide resistance. In: In: Comprehensive Insect Physiology Biochemistry and Pharmacology (eds Kerkut, GA and Gilbert LI). Pergamon Press; 1985. p. 731–73.

Georghiou G. The magnitude of resistance problem. Pesticide resistance: strategies and tactics for management. Washington D.C: National Acadamic Press; 1986.

Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Phamacogenetics 6:1-42. 1996;6:1–42.

Roberts DR, Andre R. Insecticide resistant issues in vector. Am J Trop Med Hygine. 1994;50 (suppl):21–34.

Scott JG, Liu N, Wen Z. Insect cytochromes P450: diversity, insecticide resistance and tolerance in plant toxins. Comp Biochem Physiol. 1998;121C:147–55.

Feyereisen R. Insect P450 enzymes. Annu Rev Entomol. 1999;44:507–33 .

Grant DF, Matsumura F. Glutathione S-transferase in Aedes aegypti larvae. Purification and properties. Insect Biochem. 1988;18:615–22.

Widiastuti D, Sunaryo, Pramestuti N, Martini. Monooxygenase activitity in Aedes aegypti population in Tembalang subdistrict, Semarang city. Aspirator 7(1), 2015:1-6

Widiastuti D, Ikawati B. Malathion resistance and Esterase enzyme activity of Aedes aegypti population in Pekalongan regency. Balaba 12(2), 2016:61-70

WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Switzerland. WHO CDS;2013.

WHO. The technique to detect insecticide resistance machanisms (field and laboratory manual) WHO/CDS/CPC/98.6. Geneva;1998.

Mardihusodo SJ. Application of non-specific esterase enzyme microassays to detect potential insecticide resistance of Aedes aegypti adults in Yogyakarta, Indonesia. Berkala Ilmu Kedokteran. 1996;28(4):167–71.

Matowo J, Kulkarni MA, Mosha FW, et al. Biochemical basis of permethrin resistance in Anopheles arabiensis from Lower Moshi, North-Aastern Tanzania. Malar J. 2010;9:193

Christophers S. Aedes aegypti (L.). The Yellow fever mosquito: Its life history, bionomics and structure. Cambridge, UK: Cambridge University Press;1960.

Alto BW, Bettinardi D. Temperature and Dengue virus infection in Mosquitoes : Independent effects on the immature and adult stages. 2013;88(3):497–505.

Dalla Bona AC, Picolli CF, Leandro AS, Kafka R, Twerdochilib AL, Navaro-Silva MA. Genetic profile and molecular resistance of Aedes (Stegomyia) aegypti (Diptera: Culicidae) in Foz do Iguaçu (Brazil), at the border with Argentina and Paraguay. ZOOLOGIA 29 (6), 2012:540–8.

Aguire-Obando OA, Dalla Bona AC, Duque L JE, Navaro-Silva, MA. Insecticide resistance and genetic variability in natural populations of Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Colombia. ZOOLOGIA 32 (1), 2015:14–22

Zhang L, Jiang Z, Tong J, Wang Z, Han Z ZJ. Using charcoal as base material reduces mosquito coil emissions of toxins. Indoor Air. 2010;20:176–84.

Biran A, Smith L, Lines J, Ensink J CM. Smoke and malaria: are interventions to reduce exposure to indoor air pollution likely to increase exposure to mosquitoes?. Trans R Soc Trop Med Hyg. 2007;101:1065–71.

Hill N, Zhou HN, Wang P, Xiaofang GIC and SJM. A household randomized, controlled trial of the efficacy of 0.03% transfluthrin coils alone and in combination with long-lasting insecticidal nets on the incidence of Plasmodium falciparum and Plasmodium vivax malaria in Western Yunnan Province, China. Malar J. 2014;13:2–8.

WHO. WHO specifications for pesticides used in public health - Transfluthrin. Available from: http://www.who.int/whopes/quality/Transfluthrin_eval_only_Nov2006.pdf; 2006.

Lee H. A rapid and simple biochemical method for the detection of insecticide resistance due to elevated esterase activity in mosquito larvae of Cx. quinquefasciatus. Trop Biomed. 1980;7:21–8.

Yu CZ, Gordon LS, Ming S. Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochem Mol Biol. 2004;34:1175–86.

Hardstone MC, Leichter C, Harrington LC, Kasai S, Tomita T, Scott JG. Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus. Pestic Biochem Physiol. 2007;(89):175–84.


Refbacks

  • There are currently no refbacks.


---

Health Science Journal of Indonesia

p-ISSN: 2087-7021
e-EISSN: 2338-3437

Published by : Badan Litbang Kesehatan, Kementerian Kesehatan RI

Visitor of HSJI: View HSJI Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Health Science Journal of Indonesia has been indexed by :